Oxygen uptake by aquatic sediments measured with a novel non-invasive eddy-correlation technique
نویسندگان
چکیده
This paper presents a new non-invasive technique for measuring sediment O2 uptake that, in its concept, differs fundamentally from other methods used to date. In almost all natural aquatic environments, the vertical transport of O2 through the water column toward the sediment surface is facilitated by turbulent motion. The new technique relies on measuring 2 parameters simultaneously and at the same point in the water above the sediment: the fluctuating vertical velocity using an acoustic Doppler velocimeter and the fluctuating O2 concentration using an O2 microelectrode. From these 2 parameters, which typically are measured 10 to 50 cm above the sediment surface for a period of 10 to 20 min and at a frequency of 15 to 25 Hz, the vertical flux of O2 toward the sediment surface is derived. Based on measurements performed under actual field conditions and comparisons with in situ flux-chamber measurements, we believe that this new technique is the optimal approach for determining O2 uptake by sediments. The technique is superior to conventional methods as measurements are done under true in situ conditions, i.e. without any disturbance of the sediment and under the natural hydrodynamic conditions. Furthermore, this technique can be used for bio-irrigated or highly permeable sediments, such as sands, where traditional methods often fail. While this paper only focuses on O2 uptake by sediments, the technique can also be applied to other solutes that can be measured at a sufficiently high temporal resolution.
منابع مشابه
Quantifying tidally driven benthic oxygen exchange across permeable sediments: An aquatic eddy correlation study
Continental shelves are predominately ( 70%) covered with permeable, sandy sediments. While identified as critical sites for intense oxygen, carbon, and nutrient turnover, constituent exchange across permeable sediments remains poorly quantified. The central North Sea largely consists of permeable sediments and has been identified as increasingly at risk for developing hypoxia. Therefore, we in...
متن کاملStream oxygen flux and metabolism determined with the open water and aquatic eddy covariance techniques
We quantified oxygen flux in a coastal stream in Virginia using a novel combination of the conventional open water technique and the aquatic eddy covariance technique. The latter has a smaller footprint (sediment surface area that contributes to the flux; 10 m), allowing measurements to be made at multiple sites within the footprint of the open water technique ( 1000 m). Sites included an unveg...
متن کاملEddy correlation measurements of oxygen uptake in deep ocean sediments
We present and compare small sediment-water fluxes of O2 determined with the eddy correlation technique, with in situ chambers, and from vertical sediment microprofiles at a 1450 m deep-ocean site in Sagami Bay, Japan. The average O2 uptake for the three approaches, respectively, was 1.62 ± 0.23 (SE, n = 7), 1.65 ± 0.33 (n = 2), and 1.43 ± 0.15 (n = 25) mmol m–2 d–1. The very good agreement bet...
متن کاملOxygen optodes as fast sensors for eddy correlation measurements in aquatic systems
The aquatic eddy-correlation technique can be used to noninvasively determine the oxygen exchange across the sediment-water interface by analyzing the covariance of vertical flow velocity and oxygen concentration in a small measuring volume above the sea bed. The method requires fast sensors that can follow the rapid changes in flow and the oxygen transported by this flow to calculate the momen...
متن کاملAquatic Eddy Correlation: Quantifying the Artificial Flux Caused by Stirring-Sensitive O2 Sensors
In the last decade, the aquatic eddy correlation (EC) technique has proven to be a powerful approach for non-invasive measurements of oxygen fluxes across the sediment water interface. Fundamental to the EC approach is the correlation of turbulent velocity and oxygen concentration fluctuations measured with high frequencies in the same sampling volume. Oxygen concentrations are commonly measure...
متن کامل